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The phase diagram of the two-dimensional ANNNI model is investigated by the 
cluster variation method (CVM). We confirm the stability of the disordered 
phase down to T =  0 and the absence of a Lifshitz point at finite temperature for 
K <  �89 where K is the ratio of the second to the first neighbor pair interactions. 
Two different modulation regimes for the correlation functions of the disordered 
phase are separated by a "disorder" line along which the q vector of the suscep- 
tibility maximum undergoes a lock-in transition. The study in reciprocal space 
of the stability of the disordered phase allows us to define a critical line in the 
phase diagram along which the q vector characterizing the instability is incom- 
mensurate. Finally, we show the existence of another Lifshitz point for K 
tending to infinity. 
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1. I N T R O D U C T I O N  

Ising models with competing interactions between nearest and next-nearest 
neighbors in one direction (Axial Next-Nearest-Neighbor Ising, or 
ANNNI, model) have been studied extensively because of the simplicity of 
their Hamiltonians and the variety of physical features they display; for a 
recent review see Ref. 1. 

The ANNNI model in a simple cubic lattice was first introduced by 
Elliott/2) The competing effect along the anisotropic direction was deter- 
mined by K, the ratio of the second to the first neighbor interactions. The 
main characteristics of the phase diagram (in the space of temperature T 
and K=J2/J1) are the occurrence of a Lifshitz point at K < I ,  (~'4"5) an 
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incommensurate phase, (6) an infinite countable series of commensurate 
phases springing from a multiphase point, (7,s) and a branching process. (9) 

Much attention has been paid to the 2-d ANNNI model since it 
presents a rather different picture. The most interesting feature is the nature 
of the incommensurate phase. On the basis of Monte Carlo simulations, (1~ 
it was suggested that the transition between this phase and the disordered 
one had an X-Y  character, dislocation-like spin configurations playing the 
role of the vortices of the Kosterlitz-Thouless theory. (H) Using this idea 
and a free fermion approximation, Villain and Bak (~2) showed that the 
incommensurate phase is a floating phase, characterized by algebraically 
decaying correlation functions. The unbinding of the dislocation-like con- 
figurations drives the transition to the disordered phase, which is stable 
down to T = 0. This last result is confirmed by an analogy with a quantum 
Hamiltonian (13) and an exact calculation along one line of the phase 
diagram. (14) Previous Monte-Carlo results (1~ suggesting the occurrence of 
a Lifshitz point at finite temperature for K <  �89 were shown to be due to 
finite size effects. (16) On the other hand, the existence of a Lifshitz point at 
a finite value of K >  �89 has been proposed (~7) and can be derived from the 
free fermion approximation. (~2'16) However, the possibility that the trans- 
ition between the incommensurate phase and the disordered one extends to 
K = o o  has been suggested, (~s) thereby rejecting the Lifshitz point to 
K =  ~.(~9) 

In this article, we attempt to calculate a complete phase diagram using 
only one technique, the cluster variation method. We confirm the stability 
of the disordered phase down to T =  0, and the absence of a Lifshitz point 
at finite temperature for K <  �89 The existence of two regimes of modulations 
for the correlation functions inside the disordered phase leads us to the 
determination of a "disorder" line. The study in reciprocal space of the 
stability of the disordered phase allows us to define a critical line in the 
phase diagram along which the q vector characterizing the instability is 
incommensurate. Finally, we show that the Lifshitz point for K >  �89 occurs 
at K = o e .  

2, T H E  T W O - D I M E N S I O N A L  A N N N I  M O D E L  A N D  T H E  C V M  

The model is described by the Hamiltonian 

~v=~" (jo~Yx,yax, y+l+jlax,yffx+l,y+jzffx,yax+2,y ) (1) 
X, y 

where the spins ffx,y ( = + 1) are located on the sites of a rectangular lattice 
with the lattice constant a in the x direction. The coupling along the y 
direction is ferromagnetic (Jo < O) while, along the x direction, there is a 



The Two-Dimensional ANNNI Model in the CVM Approximation 647 

I Y 

Jo 

J1 
v V 

 J2-- 

i I" 
v 

X 
Fig. 1. The two-dimensional ANNNI  model. 

competition between antiferromagnetic first- and second-neighbor interac- 
tions (J1 > 0  and J 2 > 0 )  (Fig. 1). We consider J0 = - J~ .  The competing 
effect along the anisotropic direction is measured by K =  J2/J1. Since the 
coupling along the y direction is ferromagnetic, the y chains in an ordered 
phase will be predominantly ferromagnetically ordered. Hence, an ordered 
phase is completely defined by the sequence of predominantly up and down 
y chains along the x direction. In what follows, a commensurate phase is 
denoted by Fisher and Selke's notation: for example, the sequence 
+ + -  + + - , . . .  is represented by (21 ) ,  in which the brackets indicate a 
repeating period (or half-period), see Fig. 2. A domain of size n is a 
sequence of n consecutive y chains with the same predominant 
magnetization (say + )  preceded and followed by y chains with the 
opposite magnetization ( - ) .  We denote by M the mean value of the 
domain size. Thus, for a commensurate phase, we obtain M = p/q, where p 
is the number of y chains and q the number of domains involved in the 
period (or half period) of the commensurate phase. The ground state for 

< 1 > o  o 

<2> �9 �9 o o 

< 2 1 > o  �9 o 

<221> �9 �9 o o �9 o o �9 �9 o 

<21221> �9 �9 o �9 �9 o o �9 o o �9 o o �9 �9 o 

Fig. 2. Ordered commensurate phase considered in this study. 
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io i j, 
Fig. 3. Clusters used for the CVM approximation. Rectangular cluster suggested by 
R. Kikuchi. 

K <  �89 is antiferromagnetic, noted (1 ) ,  and goes over, for K >  �89 to a ( 2 )  
antiphase state. The point K = �89 is infinitely degenerate: all phases which do 
not contain more than two consecutive chains of up (down) spins are 
stable. The phase diagram presented in the next section has been obtained 
by using the cluster variation method (CVM). (2~ The approximate CVM 
entropy was determined by using two clusters: centered lozange and rec- 
tangle (Fig. 3). 3 The accuracy of the CVM can be estimated by the results 
at the particular value K =  0 for which the ANNNI model reduces to the 
Onsager Ising model: the CVM critical temperature turns out to be only 
4 %  above that of the exact result. The CVM has also been proven to be 
reliable for two-dimensional models by the comparison of a CVM analysis 
and the exact solution of a different ANNNI model, the uniaxial brickwork 
lattice.( 22~ 

3. PHASE D I A G R A M  

A CVM study of a phase diagram consists essentially of comparing the 
free energies of a certain number of different phases. For any point of the 
phase diagram, the equilibrium state is determined by the phase with the 
lowest free energy among those which have been considered in the study. 
This implies that an infinite number of phases should be taken into 
account, which is obviously impossible. Hence, the first step is to specify 
a priori which phases are likely to be stable in some region of the phase 
diagram in the plane (k~T/IJo[, K). The first candidates are naturally the 
ground states ( 1 )  and (2) .  Since the point (K=�89 T = 0 )  is infinitely 
degenerate, we should expect that entropy effects might lift the degeneracy 
between the phases stable at this point. In the three-dimensional version of 
the ANNNI model, a low temperature expansion around this point has 
indeed proved that an infinite number of commensurate phases spring from 

3 The choice of these clusters was proposed by R. Kikuchi and J. Kulik. 
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the multiphase point. (7'8~ In the case where J~ is antiferromagnetic, this 
infinite countable sequence is represented by the basic phases (2J l ) ,  with 
j =  1, 2, 3,.... This provides us with a second set of phases possibly stable 
around the multiphase point. 

We have performed a first CVM analysis with the phases ( 1 ), (2 ) ,  
(21)  (see Fig. 2) and the disordered phase. The resulting phase diagram is 
presented in Fig. 4. We note that, contrary to the three-dimensional case, 
the disordered phase is stable down to the multiphase point at T= 0 (at 
least down to ksT/IJol =0.4; it is difficult to reach a CVM equilibrium 
state for lower temperatures because of poor numerical convergence). As a 
second step, we have introduced the next basic phase, (221) (see Fig. 2). 
According to the three-dimensional case, and because this structure is a 
mixture of (21)  and (2 ) ,  we expect this phase to be stable between the 
(21 )  and ( 2 )  phases. As can be seen from Fig. 4, this is effectively the 
case: the previous common boundary between (21)  and ( 2 )  disappears 
and is replaced by the stability regions of the (221) at the expense of (21 )  
and (2 ) ,  the stability region of which are decreased in extent. Note that 
both phases (21 )  and (221) are stable down to the multiphase point. We 
may anticipate that the same qualitative result will be obtained in the 
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Fig. 4. Phase diagram of the two-dimensional ANNNI model. Full lines represent the com- 
plete phase diagram with phases (1 ) ,  ( 2 ) ,  (21) ,  (221) and (21221). Previous stages in the 
calculation are shown by broken lines ( ( 1 ) ,  ( 2 ) ,  ( 21 ) )  and dotted lines ( ( 1 ) ,  ( 2 ) ,  
(21) ,  (221)). The dot-dashed line represents the curve Tc(K ) and the dashed line the "disor- 
der" line. 
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vicinity of the boundary ( 2 2 1 ) ( 2 1 )  by considering the next basic phase 
(231). In fact, this process could be repeated indefinitely: each new phase 
( 2 q )  will stabilize between and at the expense of the phases (2 j+ 11 ) and 
(2) .  

A third set of structures which could be stable is provided by the so- 
called branching process. In the 3-d ANNNI model, a mean field 
approach ~ has shown that two adjacent basic phases, say (21 )  and 
(221) (or A and B) are separated, beyond a branching point (Ke, T b > 0), 
by the simple combination structure (21221) (or AB). At another 
branching point, the boundary between A and AB may become unstable 
against the higher-order combination AAB. This process, repeated ad in- 
finitum, can be represented by a graph, in fact a rooted tree with an infinite 
number of branches springing from branching points at finite 
temperature. (23) The trunk separates the two basic structures which charac- 
terize the tree and each branching point is the origin of a branching phase. 
Such a graph can be associated with any pair of consecutive basic struc- 
tures ( 2 q ) ,  ( U + l l ) .  If MA and Me are the mean domain-sizes of the 
commensurate phases A and B, all the rational numbers between M a and 
Me are generated as the branching process is repeated. We have considered 
only the simplest branching phase, (21221) (see Fig. 2). (In the CVM 
approximation used in this study, the free energy of this phase is obtained 
by minimizing a functional of 155 independent correlation functions.) The 
resulting phase diagram is presented in Fig. 4. The transition between any 
ordered phase and the disordered one is of second order, whereas the 
transition between ordered phases is of first order. As expected, the 
(21221) phase is stable between (21)  and (221). However, unlike the 
three-dimensional case, the branching point seems to fall down to the mul- 
tiphase point (K= �89 T= 0). There is no reason to believe that this result 
would not generalize to any branching phase. Hence, for any fixed value of 
T (sufficiently low), M takes all the rational values as a function of K, in 
the wedge between the ( 1 )  and ( 2 )  phases. Thus, an approximate 
account of the branching process for the second ANNNI model could be 
presented as follows. 

All the branching points of the tree associated to any two consecutive 
basic phases fall down to the multiphase point, which becomes the origin of 
an infinite number of branches of all the trees, in such a way that any 
phase, basic or resulting from a branching combination, sees its stability 
region reduced to a single line. As a result, the wedge between the ( 1 ) and 
( 2 )  phases would be filled up by an infinite number of transition lines 
between stability regions reduced themselves to lines. Only commensurate 
phases are involved in this process. Hence, at fixed T, M, the mean value of 
the domain size, should take, as a function of K, only rational values. 
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However, the set of rationals has measure zero in the set of real numbers. 
Thus, if each rational value of M occurs only for one value of K, the set of 
K values for which a commensurate phase is stable should have measure 
zero. As a result, irrational values of M should be found almost 
everywhere, as proved by a low temperature analysis. 

Indeed, a low temperature expansion of the 2-d ANNNI model has 
been carried out using a free fermion approximation. (12~ The most 
interesting result obtained by this method is the occurrence of a floating 
phase in the wedge between the ( 1 )  and ( 2 )  phases. Analytically, the 
floating phase is characterized by algebraically decaying correlations. (24) 
Along the x direction, the pair correlation function is given by 

~(R) - IRI-~ cos qo" R 

where R is a lattice vector and qo a wave vector which defines the 
modulation in the floating phase. In all generality, the singular exponent, ~/, 
and ko are functions of T and K = J2/J1. As a result of this algebraic decay, 
the floating phase presents no long-range order. The wave vector ko, 
related to the inverse of M, is found to be incommensurate. Since power 
law decay is usually associated with critical points, we can in some sense 
regard a floating phase as being always in a critical regime. However, since 
the floating phase is essentially incommensurate, to account for this phase 
in terms of the ultimate limit of an infinite set of commensurate phases 
offers only a qualitative picture. 

In the CVM framework, the only way of dealing with the incommen- 
surate aspect of a phase is to transcribe the formalism into reciprocal space. 
Actually, the CVM free energy of any phase is expressed as a function of 
correlation parameters which are defined by the symmetries of the phase. 
In particular, if there is no periodicity, as in the case of an incommensurate 
phase, the number of correlation functions is infinite, preventing us from 
computing the free energy. It is then of interest to study the susceptibility 
)~(q) of the disordered phase in q space. More precisely, the disordered 
phase is unstable when the susceptibility diverges and the q vector where 
this divergence occurs characterizes the modulation of the phase which 
destabilizes the disordered one. In particular, the nature of the q vector 
(rational or irrational) defines the nature of the phase (commensurate or 
incommensurate). 

4. S U S C E P T I B I L I T Y  x ( q )  

As mentioned above, an effective way of carrying out the CVM is to 
study the susceptibility x(q) in q space. The formalism will be briefly sum- 
marized below; for more details, the reader is referred to Refs. 25 and 28. 
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In all generality, the CVM free energy can be expressed as the 
minimum of 

F=E{r (2) 

where the internal energy functional is given by 

r 

and the configurational entropy functional is given by 

(3) 

S{~} = -kB~a~Trp~lnp~ (4) 
c~ 

In these equations, ke and T have their usual meaning, ~ ( R )  is a multisite 
correlation function for a cluster of n~ points centered on lattice point R, h~ 
is a corresponding interaction energy, the set a~ are positive or negative 
integers which depend on the type of cluster and on the crystal structure, 
p~ are reduced density matrices, i.e., they represent the probability of 
finding cluster cr in a given configuration, the trace Tr being interpreted as 
a sum over allowed configurations. The a priori probability of occurrence 
of a given configuration is p* = ~ for a binary system, i.e., one for which 

lattice site occupancy is determined by the spin variable a ( R ) =  _+1. Den- 
sity matrices and correlations are related by 

with 

ap= 1-[ a(R) 
R e / 3  

In (5) the sum extends over all subclusters (/3) of the cluster (c~) considered. 
By (2)-(4) the free energy F can be considered formally as a function 

of the {h~}, and hence can be regarded as the Legendre transform of 
-TS(~), the parameters ha then appearing as field variables conjugate to 
the variables ~ .  Indeed, the minimization condition 

OF 
= 0 (all ~) (6) ?C 

leads directly to the equilibrium condition 

0(Ts) 
h~ = - -  (7) 
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It is also seen that the second derivatives F ~  of F with respect to ~ ,  ~ are 
given explicitly by 

82(TS) 
F~= c~r - k T  ,=~ a' Tr(p*)2 a~a~ - P 7  0r (8) 

7~B 

The matrix inverse to F~  can be regarded as a generalized susceptibility 
matrix {)GB} with 

~(a) 
) ~ ( R )  - 0h~ 

in which the R dependence of the correlations, and hence of the suscep- 
tibility, has been indicated. 

The matrix {F~,(R)} can be Fourier-transformed along with the sus- 
ceptibility matrix, yielding 

{Z~,(q)} = {F~,(q)} ~ (10) 

By the fluctuation dissipation theorem, the first diagonal element :~1 of the 
q space susceptibility matrix is proportional to the Fourier transform of the 
pair correlation function (short-range order intensity in the diffractionists' 
terminology). (25~ Attention will now be focused on this element, henceforth 
referred to as the susceptibility )~(q), for short. 

A second-order transition between the disordered phase and an 
ordered one is characterized by the divergence of the susceptibility )f(q) for 
the q vector which determines the periodicity of the ordered phase. The 
basic method of studying z(q) is as follows: At fixed K, starting from high 
temperature in the disordered phase, we look for the q vector qM(K, T) 
where )~(q) takes its maximum value (only one component of the full wave- 
vector needs to be considered, since there is competition only along the x 
axis). Then we follow the variation of qM(K, T) as T is lowered, keeping K 
fixed. We present in Fig. 5 some curves )~(q) for various temperatures at 
K =  0.4. We note that as T is decreased the maximum of the susceptibility 
increases and that q~(K, T) varies continuously and eventually locks-in at 
q = 0.5, the value of the q vector which characterizes the modulation of the 
( 1 )  phase. If we continue to decrease T, qM(K, T) stays locked at 0.5 and 
the maximum of )~(q) continues to increase and eventually diverges. We 
found a similar result for any value of K between 0.25 and 0.5 (see the 
example in Fig. 6 for K=0.3). As a result, there exist two different regimes 
in the disordered phase separated by a "disorder line" defined by the 
lock-in transition of q~t(K, T) (see Fig. 4). Above and to the "right" of this 
line, the q value where z(q) is maximum varies continuously with T and K, 
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Fig. 5. Temperature dependence of the susceptibility z(q) for K =  0.4. The wave-vector q is 
measured in units of 2n/a and z(q) in arbitrary units. The arrows indicate the location of the 
maxima of the susceptibility. 
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being then incommensurate with the lattice almost everywhere. This region 
reflects, then, the existence of competition between the interactions J1 and 
J2 which tends to favor incommensurate modulations, at least at high tem- 
perature. Under the disorder line, qM(K, T) locks-in at 0.5, reflecting the 
natural periodicity imposed by the lattice and J1, at low temperature and 
small K =  J2/Jj. In this region, the maximum of the susceptibility is still 
finite but increases as T decreases and eventually diverges at a temperature 
which is exactly equal to the transition temperature of the ( 1 )  phase found 
in the real space analysis, in agreement with the fact that the divergence 
occurs at q = 0.5, corresponding to the modulation of the ( 1 ) phase. This, 
in turn, confirms the second-order character of the transition. Thus the 
only instability of the disordered phase under the disorder line corresponds 
to the transition to the ( 1 )  phase. We note that the disorder line goes 
down to the point K =  0.5, T=  0. These results prove without ambiguity 
that the disordered phase is stable down to the multiphase point. 

We present in Fig. 7 the results of the susceptibility analysis for 
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o.3ol I ~ ' ' ' - ~ -  : 
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kBT/IJol 

25 

! 
2O 

15 
2~ 

X 

10 
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Fig. 7. Temperature dependence of z(qM), max imum of the susceptibility, and qM, q vector 
where this max imum occurs, for K =  0.4. q~vt is measured in units of 2~z/a, z(qM) in arbitrary 
units. The susceptibility diverges at kBTt/[Jo] = 1.496, stays infinite until the temperature 
reaches kBT2/[Jo[ = 1.236. The lock-in transition occurs at the keTJ[Je]- 1.193, and the 
transition to the ( 1 )  phase at ks T4/lJo[ = 1.175. 



656 Finel and de Fontaine 

K=0.4.  We remark that the susceptibility diverges first at a high tem- 
perature kBTJIJol = 1.496 and that the q value where this divergence 
occurs is incommensurate. This latter remark is based on the fact that the q 
value where z(q) is maximum is a smooth (differentiable) function of T (see 
Fig. 7). As T decreases, the susceptibility stays infinite until the temperature 
reaches the value kBTz/IJol = 1.236 and finally becomes finite again below 
the temperature T2 at which the susceptibility also diverges at an incom- 
mensurate value of q. According to the argument presented above, this 
indicates that the disordered phase is unstable between T1 and T2 and 
stable again under T2. As T continues to decrease, we recover the previous 
features: qM(K, T) varies continuously and locks-in at q=0.5  for 
kBT3/IJol =1.193 while the maximum of the susceptibility, after first 
decreasing, increases and finally diverges for k~ T4/IJo] = 1.175, the trans- 
ition temperature of the ( 1 )  phase. The instability of the disordered phase 
between T1 and T2 cannot be seen in the real space analysis (see Fig. 4), 
since the q vectors where the susceptibility diverges at TI and T2 are 
incommensurate. 

To summarize the results of the susceptibility analysis, we note, for 
any value of K, the temperature Tc(K) where the maximum of the suscep- 
tibility of the disordered phase diverges (see Fig. 4) and qc(K), the q vector 
where this divergence occurs (Fig. 8). Each of these curves is divided into 
two segments by the multiphase point; without ambiguity, we can say that 
one segment lies on the ( 1 )  side of the phase diagram and the other on the 
( 2 )  side. From the above results, we conclude that, on the ( 1 )  side of the 
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Critical wave vector qc(K) in units of 2n/a. 
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phase diagram, the curve Tc(K) marks the transition to the (1 )  phase and 
goes down to the point K-- �89 T= 0 where it meets the disorder line. Along 
the corresponding segment, qc(K) is locked at q = 0.5. On the ( 2 )  side, we 
found that Tc(K) lies always above the phase boundaries determined by the 
real space analysis. More precisely, To(K) has only one common point with 
each commensurate phase. At this point, the curve To(K) is tangent to the 
boundary of the commensurate phase and q~(K) is exactly equal to the 
characteristic wave vector of the modulation of this phase, in agreement 
with the observation in the real space analysis of a second-order transition 
between any ordered phase and the disordered one. We note that the curve 
qc(K) is a smooth continuous function of K. Hence, the equilibrium state, 
along the corresponding segment of Tc(K), is incommensurate almost 
everywhere. 

Another interesting question is whether there is a direct transition 
between the disordered phase and the (2 )  phase beyond some value of the 
parameter K, which would indicate the existence of a Lifshitz point on the 
(2 )  side of the phase diagram. The occurrence of this point has been 
suggested in the Hamiltonian limit (j7) and can be derived from the free fer- 
mion approximation. (12) However, the possibility of a thin tongue of 
incommensurate phase above the (2 )  phase extending to K--oo has not 
been completely ruled out. (18) In order to address this question, we have 
used another set of interaction parameters 

- - = 1  --~,  
IJ0/ IJot 

which allows us to reach the limit K =  oo for the finite value c~ = 1. The 
phase diagram in the plane (ksT/lJol, ~) cannot be obtained from the one 
in the plane (kBT/IJol, K) by simply applying a scaling factor along the K 
axis since, in the latter case, the ratio J~/Jo was kept fixed. In Fig. 9, we 
present the curves To(cQ (Fig. 9a) and qo(e) (Fig. 9b) obtained by the sus- 
ceptibility analysis. The curve qc(cQ is a smooth continuous function of c~ 
which goes down to q = �88 and reaches this value only for c~ = 1. This result 
proves that the Lifshitz point on the (2 )  side of the phase diagram occurs 
at c~= 1, where the first-neighbor pair interaction J1 vanishes. Therefore, 
the Lifshitz point merges with the "decoupling" point (jg) where the ANNNI 
model reduces to two independent Onsager lattices. 

5. D I S C U S S I O N  A N D  S U M M A R Y  

On the (1 )  side, we found that the first instability of the disordered 
phase corresponds to the second-order transition of the (1 )  phase, the 
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phase determined by the Pesch and Kroemer method (dashed line), and the phase diagram 
obtained by the free fermion approximation (dot dashed lines). (b) Critical wave vector qc(CQ 
in units of 2n/a. 
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boundary of which goes down to the multiphase point. This implies, in 
turn, the stability of the disordered phase down to this point, in agreement 
with the results of Ref. 12, 13, 14, and 18. Inside the disordered phase, the 
lock-in transition of qM(K, T), the q vector where the susceptibility reaches 
its maximum, has been studied. The corresponding "disorder line" is 
asymptotically tangent to the line K=0.25 and goes down to the mul- 
tiphase point. Note that this line approaches the boundary of the (1 )  
phase around K =  0.35 and follows it very closely, but separated, down to 
the multiphase point. This feature has been speculated (16) to account for 
the observation of a Lifshitz point in previous Monte Carlo 
calculations. (1~ The results presented here exclude the existence of a 
Lifshitz point at finite temperature along the boundary of the (1 )  phase. 
More precisely, and according to its definition, (3t the Lifshitz point merges 
with the multiphase point, since a critical curve, along which the 
modulation q varies continuously, arises from this point. Indeed, on the 
(2 )  side of the phase diagram, the instability of the disordered phase has 
been characterized by the critical line Tc(K ) along which the critical wave 
vector qc(K) is incommensurate with the underlying lattice almost 
everywhere. Moreover, the line Tc(K) appears to be an envelope curve of 
the boundaries of the commensurate phases introduced in the real space 
analysis. These results do not disagree with the occurrence of a floating 
phase. As explained above, the observed stability of commensurate phases 
is only a metastable effect. Finally, the study of the instability of the dis- 
ordered phase as J1 --~ 0 (5 --~ 1) proved the existence of a Lifshitz point on 
the (2 )  side of the phase diagram at c~ = 1. 

The CVM results can be compared with those obtained by other 
methods. The phase boundary of the (1 )  phase can be obtained by using 
the method of Miiller-Hartmann and Zittartz (26'16) and the free fermion 
approximation. (12) The agreement of these two results, as well as with 
Monte Carlo simulations (1~ is very good, especially near the multiphase 
point (see Fig. 9a). On the ( 2 )  side of the phase diagram, the curve To(K) 
presented here lies above the results obtained by the free fermion 
approximation, the method of Pesch and Kroemer, (27) and the Monte 
Carlo simulation. In fact, we expect the CVM results to be less accurate as 
J2 increases, since the size along the x axis of the largest cluster used to 
approximate the entropy (Fig. 3) is precisely equal to the distance between 
second neighbors. For J1 = 0, the CVM approximation used here reduces 
to a second-neighbor pair in the x direction and a linear triplet along the y 
axis. Therefore, the CVM accuracy is reduced. For example, for Jj = 0 
(c~ = 1), where our model reduces to an Onsager lattice, the precision on Tc 
is only 25 %. Another important remark is that the floating incommen- 
surate phase is characterized by algebraically decaying correlation 
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functions reflecting large fluctuations and the absence of a correlation 
length. Therefore, the CVM, which is a mean field theory where the units 
embedded in a mean field are the chosen clusters, cannot describe 
accurately the critical regime which precedes the transition toward the 
floating phase. However, our results prove that the disordered phase is 
stable down to T=  0, whereas the usual mean field theory would predict 
the existence of a Lifshitz point on the boundary of the ( 1 )  phase for 
K=0.25. The stability of the disordered phase down to the multiphase 
point is a consequence of the X-Y-like behavior of the floating phase. Dis- 
location-like spin configurations (1~ play the role of the vortices of the 
Kosterlitz-Thouless theory. ~11) The unbinding of these dislocations is 
responsible for the transition of the floating phase into the disordered phae. 
Thus, the the CVM approximation used here seems to treat quite well the 
essential physical features of the 2-d ANNNI model. Therefore, we believe 
that the results To(K) and qc(K) [T~(~) and q~(cr are qualitatively correct. 
A comparison of a CVM analysis and the exact solution of a different two- 
dimensional model, the uniaxial brickwork lattice, confirms this point of 
view.~ 22) 
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